a2 United States Patent

Roth et al.

US009455963B1

US 9,455,963 B1
Sep. 27,2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)
(1)

(52)

(58)

LONG TERM ENCRYPTED STORAGE AND
KEY MANAGEMENT

Applicant: Amazon Technologies, Inc., Reno, NV
(US)

Inventors: Gregory Branchek Roth, Secattle, WA

(US); Eric Jason Brandwine,

Haymarket, VA (US)

Assignee: Amazon Technologies, Inc., Reno, NV

(US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

Appl. No.: 14/575,676

Filed: Dec. 18, 2014

Int. CI.

H04L 9/32 (2006.01)

H04L 29/06 (2006.01)

GO6F 1/26 (2006.01)

GO8B 29/00 (2006.01)

U.S. CL

CPC HO4L 63/0428 (2013.01); HO4L 63/061

(2013.01)
Field of Classification Search

CPC HO4L 9/08; HO4L 63/061; HO4L 9/0844;
HO4L 63/0428; HO4W 12/04
USPC ..o 380/28-30, 44-47, 255-286;

713/150-154, 160-167, 171, 189-193
See application file for complete search history.

- —

102

Network
104

/ﬂmom—hﬂmﬁs—l

(56) References Cited

U.S. PATENT DOCUMENTS

2014/0009419 Al* 12014 Kimccoovvein GOG6F 3/0412
345/173
2015/0082022 Al* 3/2015 Marinkovic HO4L 63/0442
713/153
2015/0281191 Al1* 10/2015 Mardikar HO4L 12/5895
713/153

* cited by examiner

Primary Examiner — Evans Desrosiers
(74) Attorney, Agent, or Firm — Hogan Lovells US LP

(57) ABSTRACT

An encryption key not accessible outside a data storage
device can be used to encrypt data stored in that device. The
received data may have been encrypted under an external
key, such as a key associated with a customer of a data
storage service. Upon receiving the data encrypted under the
external key, the data can be decrypted using a copy of the
external key and then re-encrypted, inside the data storage
device, using the internal key. If the external key is to be
rotated, the stored data does not need to be modified as the
data can be decrypted using the internal key and then
re-encrypted using the new external key in response to an
authorized request for the data after the change to the new
external key. Such an approach provides near instant key
rotation while not having to re-encrypt data under the new
key unless requested.

21 Claims, 11 Drawing Sheets

%100

110 112

Resource
Manager

Resource
L |

108

U.S. Patent Sep. 27, 2016 Sheet 1 of 11 US 9,455,963 B1

|
|
102 |
I | Resource
I n Manager
It =
I e
| r
I f
| a 2 Resource
I |c]
| e
: 114
I <>
[
|
|
|

U.S. Patent Sep. 27, 2016

208

>
Key
Source

206
210

206

k1

Sheet 2 of 11

US 9,455,963 B1

%200

5204

Data Storage
Controller

k1, k2

k2
encrypted
data

- 214

Storage
Command Command
Initiator ~—
202
216
FIG. 2(a)
222
Storage
Initiator ——
202
222

Data Storage
Controller

k1, k2

k2
encrypted
data

FIG. 2(b)

218

U.S. Patent

302

308

Sep. 27, 2016 Sheet 3 of 11

Receive write request with data
encrypted under a first key

i}

Decrypt data using first key

\

Re-encrypt the data, inside the
storage device, using a second key
undiscoverable outside the
storage device

\2

R

Store the encrypted data in the
storage device

FIG. 3(a)

US 9,455,963 B1

% 300

U.S. Patent Sep. 27, 2016 Sheet 4 of 11 US 9,455,963 B1

% 350

352
Receive read request

Decrypt data, inside the device,
using the second key

\

Re-encrypt the data, inside the
storage device, using an external
key

¥

Transmit the encrypted data in
response to the request

358

SRR

FIG. 3(b)

U.S. Patent Sep. 27, 2016 Sheet 5 of 11 US 9,455,963 B1

4
208 00
<>
Key
Source

402
204
@/ K3 ¢
402
404 Data Storage k1

Controller
Storage
Command Command k3, k2
[nitiator L. 214

k2

202
encrypted
data
FIG. 4(a) ”s
%420
422 Data Storage
Controller
Storage
Command | k3, k2
i -—
Initiator L 214
202 k2
424 encrypted
data

FIG. 4(b) l

U.S. Patent Sep. 27, 2016 Sheet 6 of 11 US 9,455,963 B1

%500

502 'L Receive read request for data
previously encrypted under first key

4

504 '_‘ Decrypt data, inside the device,
using the second key

¥

506 Re-encrypt.the dalta, inside the
’\, storage device, using a third key
now associated with the source of
the read request

¥

508
’__ Transmit the encrypted data in
response to the request

FIG. 5

Sheet 7 of 11

U.S. Patent Sep. 27, 2016

208
C O

Key
Source

602

k1, k3, k4, kb

US 9,455,963 B1

%600

S 204

206
Data Storage
St Controller
orage
Command Command (k3k1k’4k2k5)
5 Initiator)) 214
202 k2
212 216 encrypted
data
FIG. 6(a) ”e
%620
622 Data Storage /')k1
St Controller /
orage
Command | ti tg
Initiator i (k4, k5)
k3 - 214
202
624 encrypted
data
FIG. 6(b) 218

U.S. Patent

Sep. 27, 2016 Sheet 8 of 11

Receive write request including
data encrypted under first key

g

Decrypt data and store data
encrypted under second key

v

Cause first key to be replaced by
third key at specified time

A\

Receive read request for data
previously encrypted under first key

12

Decrypt data, inside the device,
using the second key

¥

Re-encrypt the data, inside the
storage device, using a third key
now associated with the source of
the read request

¥

Transmit the encrypted data in

response to the request

FIG. 7

US 9,455,963 B1

% 700

U.S. Patent Sep. 27, 2016 Sheet 9 of 11 US 9,455,963 B1

800
806 806
N N %
mmmmmmmmmm

L802
g(/ FIG. 8(a)

425 820
~ S

r L

FIG. 8(b)

N -

[1

FIG. 8(c)

U.S. Patent Sep. 27, 2016 Sheet 10 of 11 US 9,455,963 B1

% 900

902
’\’ Receive read request for data
stored encrypted under second key
904 ¥

C

Authenticate source of the request

906 Authenticated?

Deny request L
908

First Identity? Third/Unknown
\ /6910
Second
h 4
Transmit data encrypted Return no data
under first key
r“J ! rJ
912 Transmit data encrypted 916
under third key

914

FIG. 9

U.S. Patent

Sep. 27, 2016

Sheet 11 of 11

Memory
Networking
1004 Component
[1008
Processor
1002
l Input Device
Display m
1006
Memory
Communication
1104 element
| 1108
Processor
1102
l Storage medium
Data port M
1106

FIG. 11

US 9,455,963 B1

%1 000

%1100

US 9,455,963 Bl

1
LONG TERM ENCRYPTED STORAGE AND
KEY MANAGEMENT

BACKGROUND

The security of computing resources and associated data
is of high importance in many contexts. As an example,
organizations often utilize networks of computing devices to
provide a robust set of services to their users. Networks
often span multiple geographic boundaries and connect with
other networks. An organization, for example, may support
its operations using both internal networks of computing
resources and computing resources managed by others.
Computers of the organization may communicate with com-
puters of other organizations to access and/or provide data
while using services of another organization. In many
instances, organizations configure and operate remote net-
works using hardware managed by other organizations,
thereby reducing infrastructure costs and achieving other
advantages. With such configurations of computing
resources, ensuring that access to the resources and the data
they hold is secure can be challenging, especially as the size
and complexity of such configurations grow.

One of the endemic problems in storage encryption is that
the amount of data stored can be quite large, and can require
storage over a long period of time. Due to the length of time
the data is stored, it is important that security is managed
properly over that time. Any mistake in security manage-
ment can be difficult to correct due to the sheer volume of
data that is stored. Further, the need to decrypt and re-
encrypt large volumes of data can require a significant
amount of resources. Various approaches have introduced
key rotation for securing data, where the key used to access
specific data will change over time. Such a change has to
happen relatively quickly, however, in order to avoid prob-
lems with certain portions of the data being secured with the
old key while other portions have been switched over to the
new key. Certain approaches attempt to obfuscate the key
used for encryption, such as by providing a wrapper for the
key such that the wrapper can be changed to manage the
security change. Difficulties can arise, however, when a
customer does not have access to the new wrapper for the
current key.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments in accordance with the present
disclosure will be described with reference to the drawings,
in which:

FIG. 1 illustrates an example environment in which
various embodiments can be implemented.

FIGS. 2(a) and 2(b) show an example of an environment
in which data encrypted under a first key can be stored
encrypted under a second key in accordance with various
embodiments.

FIGS. 3(a) and 3(b) illustrate portions of an example
process for re-encrypting data for storage using a key that is
not accessible outside the storage device that can be utilized
in accordance with various embodiments.

FIGS. 4(a) and 4(b) illustrate an example environment
wherein the key used to encrypt data for transmission is
changed while the data is still stored using a key not
accessible outside the storage device that can be utilized in
accordance with various embodiments.

FIG. 5 illustrates an example process for changing the key
used to encrypt data for transmission, while the data is still

10

15

20

25

30

35

40

45

50

55

60

65

2

stored using a key not accessible outside the storage device,
that can be utilized in accordance with various embodi-
ments.

FIGS. 6(a) and 6(b) illustrate an example environment
wherein keys used to encrypt data for transmission are
rotated over time while the data is still stored using a key not
accessible outside the storage device that can be utilized in
accordance with various embodiments.

FIG. 7 illustrates an example process rotating keys used
to encrypt data for transmission, while the data is still stored
using a key not accessible outside the storage device, that
can be utilized in accordance with various embodiments.

FIGS. 8(a), 8(b), and 8(c) illustrate example connector
configurations that can be used to trigger a key rotation in
accordance with various embodiments.

FIG. 9 illustrates an example process for re-encrypting
keys for transmission using difterent keys for different users
that can be utilized in accordance with various embodi-
ments.

FIG. 10 illustrates example components of a computing
device that can be used to implement aspects of various
embodiments.

FIG. 11 illustrates example components of a storage
device that can be used to implement aspects of various
embodiments.

DETAILED DESCRIPTION

In the following description, various embodiments will be
described. For purposes of explanation, specific configura-
tions and details are set forth in order to provide a thorough
understanding of the embodiments. However, it will also be
apparent to one skilled in the art that the embodiments may
be practiced without the specific details. Furthermore, well-
known features may be omitted or simplified in order not to
obscure the embodiment being described.

Approaches described and suggested herein relate to the
storage of data, as may be performed in a single storage
device, a distributed system, or a data storage service,
among other such options. A user, such as a customer of a
multi-tenant service provider, may want to cause encrypted
data to be stored in a data storage service, such as may
include a disk array provided by the service provider in a
multi-tenant environment. The user might want to encrypt
the data using a specific cryptographic key, as may be
obtained from a key management service or other such
source. The user can cause the data to be encrypted under the
specified key and transmitted to the data storage service for
storage (or another such data storage operation).

A data storage system in the multi-tenant service provider
environment can receive the encrypted data and cause the
data to be stored in its encrypted form. In various embodi-
ments, the data storage service can also receive a copy of the
key that was used to encrypt the user data. The data storage
service then can have the ability to decrypt the data using the
key, in order to cause ciphertext to be converted to cleartext
or plaintext, for example. While the data storage service
could store the cleartext, the user (or service provider, etc.)
may prefer to have the data stored in encrypted form for
security purposes. While the device could utilize a key
obtained from a source such as a key management source,
the availability of the key outside a device could potentially
enable a third party to decrypt the data upon obtaining a
copy of that key.

Accordingly, approaches in accordance with various
embodiments can enable each individual storage device to
utilize a respective cryptographic key that is generated

US 9,455,963 Bl

3

within the storage device and inaccessible outside the
device. Data that is received encrypted under a first key,
available outside the storage device, can be decrypted using
a copy of that first key. That decrypted data then can be
re-encrypted under a second key that is generated within the
storage device and inaccessible outside the device. For
example, the internal key might be stored in a tamper-
resistant cryptographic co-processor or other tamper-resis-
tant hardware on the storage device. Such an approach
enables the data to be securely stored while encrypted under
a key that cannot be obtained or exported outside the device
using an interface of the device. When the user subsequently
wants to receive the data back, the stored data can be
decrypted using the second key and provided to the user. The
data can be sent in cleartext or re-encrypted using the first
key, such that the user can receive back the data in an
encrypted form that is able to be decrypted by the user.

In some cases, the data that is returned to the user can be
re-encrypted using a different key than was used to encrypt
the data that was sent to the data storage service. For
example, the user might provide a new key to the data
storage service, or a new key might be sent (i.e., from a key
management service) to both the user and the data storage
service as part of a key rotation process. In some embodi-
ments, the data storage service might have received multiple
keys with timestamps that can be stored until the appropriate
time, at which data can be re-encrypted under the current
key. In this way, key rotation for data transmitted between a
user and a data storage device, system, or service can be
performed quickly without need to decrypt and re-encrypt
all of the data for each rotation. Further, the data can be
stored encrypted under a key that is never exposed outside
the data storage device. When the data is to be read from the
device, it can be decrypted using the secure key and then
re-encrypted under the current user key. The secure key
inside the data storage device, or the “internal” key as
referred to herein, can also be rotated to cause the stored data
to be re-encrypted under a new key generated inside the data
storage device. The re-encryption can occur as a result of a
failure, tamper event, or other such occurrence. Various
other functions can be implemented within the various
embodiments as well as discussed and suggested elsewhere
herein.

FIG. 1 illustrates an example environment 100 in which
aspects of the various embodiments can be implemented. In
this example a user is able to utilize a client device 102 to
submit requests across at least one network 104 to a resource
provider environment 106. The client device can include any
appropriate electronic device operable to send and receive
requests, messages, or other such information over an appro-
priate network and convey information back to a user of the
device. Examples of such client devices include personal
computers, tablet computers, smart phones, notebook com-
puters, and the like. The at least one network 104 can include
any appropriate network, including an intranet, the Internet,
a cellular network, a local area network (LLAN), or any other
such network or combination, and communication over the
network can be enabled via wired and/or wireless connec-
tions. The resource provider environment 106 can include
any appropriate components for receiving requests and
returning information or performing actions in response to
those requests. As an example, the provider environment
might include Web servers and/or application servers for
receiving and processing requests, then returning data, Web
pages, video, audio, or other such content or information in
response to the request.

10

15

20

25

30

35

40

45

50

55

60

65

4

In various embodiments, the provider environment may
include various types of resources that can be utilized by
multiple users for a variety of different purposes. In at least
some embodiments, all or a portion of a given resource or set
of resources might be allocated to a particular user or
allocated for a particular task, for at least a determined
period of time. The sharing of these multi-tenant resources
from a provider environment is often referred to as resource
sharing, Web services, or “cloud computing,” among other
such terms and depending upon the specific environment
and/or implementation. In this example the provider envi-
ronment includes a plurality of resources 114 of one or more
types. These types can include, for example, application
servers operable to process instructions provided by a user
or database servers operable to process data stored in one or
more data stores 116 in response to a user request. As known
for such purposes, the user can also reserve at least a portion
of the data storage in a given data store. Methods for
enabling a user to reserve various resources and resource
instances are well known in the art, such that detailed
description of the entire process, and explanation of all
possible components, will not be discussed in detail herein.

In at least some embodiments, a user wanting to utilize a
portion of the resources 114 can submit a request that is
received to an interface layer 108 of the provider environ-
ment 106. The interface layer can include application pro-
gramming interfaces (APIs) or other exposed interfaces
enabling a user to submit requests to the provider environ-
ment. The interface layer 108 in this example can also
include other components as well, such as at least one Web
server, routing components, load balancers, and the like.
When a request to provision a resource is received to the
interface layer 108, information for the request can be
directed to a resource manager 110 or other such system,
service, or component configured to manage user accounts
and information, resource provisioning and usage, and other
such aspects. A resource manager 110 receiving the request
can perform tasks such as to authenticate an identity of the
user submitting the request, as well as to determine whether
that user has an existing account with the resource provider,
where the account data may be stored in at least one data
store 112 in the provider environment. A user can provide
any of various types of credentials in order to authenticate an
identity of the user to the provider. These credentials can
include, for example, a username and password pair, bio-
metric data, a digital signature, or other such information.
The provider can validate this information against informa-
tion stored for the user. If the user has an account with the
appropriate permissions, status, etc., the resource manager
can determine whether there are adequate resources avail-
able to suit the user’s request, and if so can provision the
resources or otherwise grant access to the corresponding
portion of those resources for use by the user for an amount
specified by the request. This amount can include, for
example, capacity to process a single request or perform a
single task, a specified period of time, or a recurring/
renewable period, among other such values. If the user does
not have a valid account with the provider, the user account
does not enable access to the type of resources specified in
the request, or another such reason is preventing the user
from obtaining access to such resources, a communication
can be sent to the user to enable the user to create or modify
an account, or change the resources specified in the request,
among other such options.

Once the user is authenticated, the account verified, and
the resources allocated, the user can utilize the allocated
resource(s) for the specified capacity, amount of data trans-

US 9,455,963 Bl

5

fer, period of time, or other such value. In at least some
embodiments, a user might provide a session token or other
such credentials with subsequent requests in order to enable
those requests to be processed on that user session. The user
can receive a resource identifier, specific address, or other
such information that can enable the client device 102 to
communicate with an allocated resource without having to
communicate with the resource manager 110, at least until
such time as a relevant aspect of the user account changes,
the user is no longer granted access to the resource, or
another such aspect changes.

The resource manager 110 (or another such system or
service) in this example can also function as a virtual layer
of hardware and software components that handles control
functions in addition to management actions, as may include
provisioning, scaling, replication, etc. The resource manager
can utilize dedicated APIs in the interface layer 108, where
each API can be provided to receive requests for at least one
specific action to be performed with respect to the data
environment, such as to provision, scale, clone, or hibernate
an instance. Upon receiving a request to one of the APIs, a
Web services portion of the interface layer can parse or
otherwise analyze the request to determine the steps or
actions needed to act on or process the call. For example, a
Web service call might be received that includes a request to
create a data repository.

An interface layer 108 in at least one embodiment
includes a scalable set of customer-facing servers that can
provide the various APIs and return the appropriate
responses based on the API specifications. The interface
layer also can include at least one API service layer that in
one embodiment consists of stateless, replicated servers
which process the externally-facing customer APIs. The
interface layer can be responsible for Web service front end
features such as authenticating customers based on creden-
tials, authorizing the customer, throttling customer requests
to the API servers, validating user input, and marshalling or
unmarshalling requests and responses. The API layer also
can be responsible for reading and writing database con-
figuration data to/from the administration data store, in
response to the API calls. In many embodiments, the Web
services layer and/or API service layer will be the only
externally visible component, or the only component that is
visible to, and accessible by, customers of the control
service. The servers of the Web services layer can be
stateless and scaled horizontally as known in the art. API
servers, as well as the persistent data store, can be spread
across multiple data centers in a region, for example, such
that the servers are resilient to single data center failures.

In an example wherein an storage operation command is
to be transmitted to the appropriate data storage device in the
provider embodiment, a digitally signed request, such as an
API request, can be received that may be formatted in
various ways in accordance with various embodiments. For
example, in some embodiments, the request is a web service
request received over a network. The request may be trans-
mitted in accordance with an application level protocol, such
as the HyperText Transfer Protocol (HTTP). The request
may be formatted such that fulfillment of the request
involves the performance of at least one data storage opera-
tion and therefore transmission of a storage operation com-
mand such as described herein. A cryptographic key may be
accessed for verifying a digital signature of the received
request. Accessing the cryptographic key may be performed
in various ways in accordance with various embodiments.
For example, in some embodiments one or more features of
the request are used to select a suitable cryptographic key

10

15

20

25

30

35

40

45

50

55

60

65

6

from a plurality of cryptographic keys. An identity of an
entity that submitted the request may be associated with the
cryptographic key that is usable to verify digital signatures
submitted by that identity. As another example, the request
may include an identifier of a cryptographic key that enables
selection of a suitable cryptographic key based in part on the
identifier included in the request. Generally, any way by
which a suitable cryptographic key usable for verifying the
request is determinable may be used.

After accessing the cryptographic key, a determination
can be made as to whether the digital signature is valid. In
some embodiments, the cryptographic key is a symmetric
cryptographic key and determining whether the digital sig-
nature is valid may include generating a reference digital
signature of the request (or portion thereof) and determining
whether the reference signature matches the digital signature
that was received with the request. If it is determined that the
signature is not valid, the request may be denied. The request
may be denied in various ways in accordance with various
embodiments. For example, in some embodiments denying
the request includes providing a response to the request that
indicates that the request is denied and/or indicates one or
more reasons for its denial. Other ways by which a request
may be denied may involve performing no additional opera-
tions in connection with the request. Generally denying the
request may include any suitable way of avoiding fulfillment
of the request.

If, however, it is determined that the signature is valid, an
appropriate signing key can be accessed. In one embodi-
ment, a signing key is a cryptographic key usable to digitally
sign a storage operation command to enable submission of
the storage operation command along with the digital sig-
nature such that the digital signature can be successfully
verified upon receipt and the storage operation command
will, as a result, be fulfilled. The signing key that is accessed
may vary in accordance with various embodiments. In some
examples, the signing key is the same cryptographic key
used to verify the digital signature of the request. In other
examples, the signing key is a key derived (such as in
accordance with various techniques described herein) based
at least in part on the cryptographic key used for verifying
the digital signature of the request. In yet another example,
the signing key may be a cryptographic key from which the
cryptographic key used for verifying the digital signature of
the request is derived. In yet another example, neither the
signing key nor the cryptographic key used for verifying the
digital signature of the request is derived from the other. It
should be noted that in embodiments where the crypto-
graphic key used for verifying the digital signature of the
request and the signing key are the same, the operation of
accessing the signing key may have already been performed
and thus may be considered to not be a separate operation.

Regardless of how the signing key is accessed, a storage
operation command can be generated. In one embodiment,
the storage operation command is a command to perform a
data storage operation that matches the request that was
received. For example, an application programming inter-
face of a system through which API calls are submittable
may have a variety of API calls that may be made to effect
data storage operations. The various types of API calls that
can be made may correspond to types of storage operation
commands that are transmitted as part of fulfillment of the
API calls. Further, generating a storage operation command
may include populating a template for a command with data
which may be data received in the request. As an illustrative
example, if the request is an API request to store data, the
storage operation command may include or otherwise

US 9,455,963 Bl

7

specify the data to be stored that was included in the request.
Once the storage operation command has been generated,
the storage operation command can be digitally signed,
which as discussed above may include using the accessed
signing key to generate a digital signature based, at least in
part, on the generated storage operation command. Once the
storage operation command has been digitally signed, the
storage operation command and the digital signature that
was generated can be transmitted to data storage, such as at
least one compute-enabled storage device as discussed
herein, where at least one compute-enabled storage device
can be configured to verify the digital signature using its
own copy of the signing key (which it may have to derive,
in some embodiments) and, upon verification of the digital
signature, fulfill the storage operation command.

In this process a storage command is transmitted as a
result of a received API request being fulfilled. Storage
commands may be transmitted in other ways as well. For
example, in some embodiments a system that receives API
requests is operable to fulfill the API requests by performing
log operations where the log operations are transmitted at a
later time to another system that processes a log in order to
persistently store data in accordance with the operations that
were performed. A system that receives API requests may,
for instance, utilize in a memory copy of a database to
provide low latency access to the database through, for
example, appropriately configured database queries. Thus,
the system may provide quick performance of fulfillment of
API requests by utilizing the in-memory copy of the data-
base. To maintain the persistently stored copy of the data-
base, another system may maintain the copy of the database
in persistent storage. The system with the in-memory copy
of'the database may transmit logs of the operations that were
performed which may then be processed by the system with
the persistently stored copy of the database in order to
update the persistently stored copy of the database asyn-
chronously with the API requests that were received.

A data storage command may be configured in accordance
with a data storage command protocol, which may be a
structured query language (SQL) command, a binary input/
output (I/0) protocol, a block-level storage operation com-
mand or otherwise. Other examples include the small com-
puter system interface (SCSI) and serial ATA. Variations of
such protocols may also be used, such as Internet SCSI
(iSCSI) and SCSI over Fiber Channel. The data storage
command may be transmitted over another protocol, such as
by encoding the command in a data packet transmitted over
a network. For example, the command may be encoded in a
TCP/IP packet or Fiber Channel (FC) packet. While
examples of specific protocols are provided for the purpose
of illustration, the techniques described herein are extend-
ible to other protocols including, but not limited to, propri-
etary protocols. Further, such a binary /O protocol used
with the techniques described herein may include the ability
to encode policy (to be enforced by a signature verifying
entity, for example), bearer tokens, cookies, cryptographic
key identifiers, and/or other metadata. Generally, a storage
operation command (also referred to as a data storage
operation command) may be any digital encoding of a
command and associated metadata that is receivable by a
data storage system to cause the data storage system to fulfill
the command (in accordance with the metadata, if appli-
cable). Further, storage operation commands may be trans-
mitted in plaintext (i.e., unencrypted) for to avoid latency
caused by the need to perform encryption/decryption opera-
tions.

10

15

20

25

30

35

40

45

50

55

60

65

8

In at least some embodiments, the data storage can
comprise at least one data storage device, such as a solid
state drive (SSD) or Serial ATA (SATA) drive, that has
processing or “computing” capacity onboard that enables the
device to perform actions such as may involve the authen-
ticating of commands. These commands might be associated
with various systems, devices, components, or entities, such
as software guide extensions (SGX) enclaves, hypervisor
guests, or customers of a provider, among others. Such a
“compute-enabled” storage device can receive a digitally
signed storage operation command, for example, and
authenticate the command using the appropriate key stored
in the device.

In conventional data encryption approaches, a key is
sealed to the trusted code (i.e., to a trusted data enclave) and
the storage system is unaware of the key, as a request
indicates to store encrypted text at a particular offset, for
example, and later provide that encrypted data back in
response to a subsequent request. The storage device does
not have access to the cleartext (or plaintext) associated with
the encrypted data, and thus cannot perform various pro-
cessing tasks related to the data. If the storage device is
compute-enabled, and is able to obtain the cleartext instead
of just the ciphertext from the encrypted data, the storage
device can perform various additional processing tasks, such
as to append the data to an existing list, increment a
particular value, or otherwise semantically interpret the
storage command. In order to be able to access the cleartext
from the encrypted data, however, the compute-enabled
storage device needs to have access to the key that was used
to encrypt the data. A request (e.g., a SATA call or SCSI call)
received to the storage device can have appended, or pre-
pended, authentication information that includes at least
some identification data. The compute-enabled storage
device can process data for the request, as may involve
various mathematical and string manipulation tasks, and
determine whether the source claiming to be executing the
command is actually the party executing the command. If so,
another determination can be made as to whether that party,
once authenticated, is also authorized or permitted to
execute the command. If so, the compute-enabled storage
device can execute the command as appropriate.

FIG. 2(a) illustrates an example environment 200 in in
which various embodiments can be implemented. This
example environment 200 includes a storage command
initiator 202 and data storage 204, such as a data storage
system or service that can include one or more data storage
devices. The storage command initiator 202 may be imple-
mented in various ways in accordance with various embodi-
ments. For example, the storage command initiator can be a
computer system or client device that is operable to gener-
ate, transmit, and receive input/output commands, data read
and write requests, and other such communications. In some
embodiments, the storage command initiator can be a pro-
cess executing in a guest in a hypervisor provided in a
multi-tenant environment by a multi-tenant service provider.
The storage command initiator can issue storage operation
commands to be performed by another system, service, or
component such as described in more detail below. These
commands can be issued over a network, such as in the form
of a series of data packets, but can also be transmitted over
other mechanisms such as a storage bus that utilizes an
embedded storage protocol. The data storage 204 can be a
data storage system, service, or device, for example, that is
enabled to perform various operations, on one or more data
storage devices, in response to data storage commands 210,
where the commands generally relate to the persistent stor-

US 9,455,963 Bl

9

age of data. In some embodiments the data storage system
is a backend system of a database system that may be
operated as part of a database service. The backend system
can include one or more hard drives with spinning magnetic
media and/or solid state media, and generally devices and
systems of multiple devices that persistently store data.
While devices that persistently store data are used through-
out for the purpose of illustration, the techniques described
herein are useable in connection with other data storage
systems that do not necessarily persistently store data such
as data storage systems that maintain data in volatile
memory without persistently storing the data. The data
storage service can include one or more data storage devices
which can each store data for one or more customers or
users, and may partitioned as known for such purposes. The
service can also include one or more data storage controllers,
which can be internal or external to any of the physical
storage devices, and in at least some embodiments each
physical data storage device can have its own data storage
controller 218 and non-transitory computer-readable storage
medium 214 for storing data. In at least some embodiments
the data storage devices can be configured to perform
various operations on the data as well, as discussed else-
where herein, as may include data transformation, de-dupli-
cation, or compression operations, among others. Data can
be compressed before it is written to storage in order to
conserve storage capacity on the device and reduce write
amplification as may be associated with garbage collection
and overwrites.

As mentioned, a storage command initiator 202, such as
a client device, might want to cause data to be stored in the
data storage service 204 in an encrypted form. In order to
accomplish this, the storage command initiator 206 can
receive a cryptographic key from an appropriate key source
208, such as a key management service, although in other
embodiments a client device can generate its own keys for
such purposes. In some instances the storage command
initiator can cause the encrypted data to be sent to the data
storage service to be stored encrypted under that key. In
various embodiments, the both the storage command initia-
tor 202 and the data storage service 204 have access to
instances of the same cryptographic key 206 that is used to
encrypt the data for transmission. The cryptographic key 206
may be, for example, a symmetric or asymmetric crypto-
graphic key useful for the performance of various crypto-
graphic algorithms. Examples of cryptographic algorithms
include those discussed above and encryption/decryption
algorithms, such as may include modes (e.g., XTS) of the
advanced encryption standard (AES), the data encryption
standard (DES), triple DES (3DES), Serpent, Twofish, blow-
fish, CASTS, RC4 and the international data encryption
algorithm (IDEA), among others. In an embodiment, the
storage command initiator 202 and data storage service 204
each receive a copy of the cryptographic key 206 from a key
source 208. The key source 108 may be a system that
manages keys on behalf of one or more entities. For
example, the key source may be a computer system that
securely stores cryptographic keys, providing copies of the
cryptographic keys only to entities authorized to receive
such copies. The key source 208 may itself receive crypto-
graphic keys from another key source. As keys are passed
from one entity to another, the keys may be scoped so that
a first system with access to a first key uses the first key to
derive a second key that is passed onto a second system.

In some embodiments, receipt of a cryptographic key
associated with a customer of the provider enables the
storage command initiator 202 to digitally sign storage

10

15

20

25

30

35

40

45

50

55

60

65

10

commands using the cryptographic key. If the storage com-
mand initiator receives requests from a client device and
submits storage commands on behalf of the customer, the
cryptographic key can be usable by the storage command
initiator 202 to verify requests submitted by, or on behalf of,
the customer prior to digitally signing storage commands as
part of fulfillment of the requests. In some other embodi-
ments, the key source 208 may be an authentication sub-
system of a computing resource service provider.

As illustrated in the example situation 200 of FIG. 2(a),
the storage command initiator 202 receives a copy of a first
key 206, herein referred to as k1, to be used in encrypting
data to be stored by the data storage service 204. The storage
command initiator 202 can submit a command 210 that
includes the data 216 encrypted under k1. The command 210
can also include a digital signature in some embodiments,
which can be generated using k1 or another such key or
credential. In other embodiments, other credentials might be
provided to enable authentication of the source of the
request. These credentials can include any appropriate cre-
dentials, such as passwords, retinal scans, fingerprint data,
and the like.

As mentioned, the command can be received to a data
storage service 204, or a storage system or device, among
other such options. The data storage service can authenticate
the source of the request, such as by validating a digital
signature or other such credential as discussed elsewhere
herein. If the source of the request is authenticated and the
command 210 is able to be performed by the data storage
service 204, a data storage controller 218 of the service can
determine the first key 206 associated with the source, here
the customer, and attempt to decrypt the data 216. If the data
was not encrypted with the appropriate key for that source,
the request can be denied or operation rejected. If the data
is able to be encrypted, the service can decrypt the data using
k1. The decrypted data, such as may be represented in
cleartext, can then be re-encrypted for storage in the appro-
priate data store of the data storage service.

As mentioned, in order to enable the data to be stored in
an encrypted format while allowing for quick rotation of
externally accessible keys, a data storage device to which
encrypted data can be stored can be configured to generate
a second key, herein referred to as k2, which will be an
internal key for the device. The second key will not be
accessible, or exportable, outside the storage device, and
thus each storage device used as part of the data storage
service can have its own internal encryption key. Templates,
formats, requirements, or other guidelines for the creation of
the keys can be provided, but the data storage controller 218
(or another such component) of each storage device can be
tasked with generating the respective key for data stored
within that device. As illustrated in the example situation
250 of FIG. 2(b), the data storage controller 218 can also
have access to any externally available keys, such as ki,
used to transmit data to or from the device on behalf of any
customers of the service. These externally available keys can
be maintained at other places within the data storage service
as well, such as a central key repository, such that each
individual storage device does not have to maintain a current
copy of one or more keys for each customer for which data
is stored.

When a read request is subsequently received, the data
storage controller can cause the stored data encrypted under
k2 to be read from the data store 214 and decrypted using
internal key k2. The data can then be re-encrypted using
externally available user key k1, and a response 222 can be
returned to the storage command initiator 202 (or another

US 9,455,963 Bl

11

appropriate destination or address) with the requested data
222 encrypted under k1. The transmission of such data may
require various validation, authentication, and/or authoriza-
tion processes as discussed herein and generally known for
serving data requests.

FIGS. 3(a) and 3(b) illustrate portions 300, 350 of an
example process for storing and retrieving encrypted data in
such an environment that can be utilized in accordance with
various embodiments. It should be understood for this and
other processes discussed herein that there can be additional,
alternative, or fewer steps performed in similar or alternative
orders, or in parallel, within the scope of the various
embodiments unless otherwise stated. In this example, a
write request (or input/output command including at least a
write portion) is received 302 to data storage, such as a data
storage service or data storage device, among other such
options. In this example the write request includes data that
is encrypted under a first key, such as an externally available
user key as discussed herein. In order to determine whether
to process the request in some embodiments, an authenti-
cation can be performed in order to authenticate the identity
of the requestor. This can include, for example, verifying a
credential such as a password, biometric identifier, digital
signature, and the like. If it is determined that the source of
the request is not, or cannot be, authenticated, the request
can be denied.

The data storage device receiving the request can deter-
mine the appropriate key for the source, here the first key,
and can decrypt 304 the data, received with the request,
using a local copy of the first key. If the device does not have
a local copy of the key, the device can request a copy of the
key from an appropriate source, such as a key management
service or a key store of the data storage service, among
others. As mentioned, in some cases the data will be
decrypted inside the device such that the cleartext (or other
decrypted version) will not be available outside the storage
device. Once decrypted, the data storage device can utilize
a second key to re-encrypt 306 the data inside the data
storage device. As mentioned, the second key can be gen-
erated internal to the data storage device, which can have
processing and key management capabilities in at least some
embodiments. The key can be a specific type of key, can be
generated using a specified template or function, or can at
least satisty various criteria, among other such options. The
re-encrypted data, encrypted under the second key, can then
be stored 308 by the data storage device.

Once the data is stored by the data storage device, the data
can be retrievable by an authorized party or entity, such as
in the portion of the process 350 illustrated in FIG. 3(b). In
this example, a read request is received 352 to the data
storage device. As discussed elsewhere herein, this request
could be the result of a separate request from a customer to
a data storage service, where a command initiator or other
such component can send requests as appropriate to the data
storage devices actually storing the data needed to serve the
request, among other such options. The source of the request
can be authenticated in some embodiments, such as by
verifying one or more credentials associated with the request
as discussed elsewhere herein. Authorization and other veri-
fication steps can also be performed as discussed herein in
various embodiments. If it is determined that the request
cannot be authenticated (or authorized, validated, etc.) in
such cases, the request can be denied. If it is determined that
the source of the request corresponds to an identity autho-
rized to retrieve or operate on the data, for example, the
relevant data stored by the data storage device can be
decrypted 354, inside the data storage device, using the

10

15

20

25

30

35

40

45

50

55

60

65

12

second key inaccessible outside the data storage device. A
determination can be made as to the externally accessible
key (or “external” key) corresponding to the request, and the
data can be re-encrypted 356 using the external key, which
can be the same as, or different from, the first key. In this
example the data is re-encrypted inside the data storage
device, but in other embodiments the data can be re-
encrypted in a data storage environment including the data
storage device, or other such location wherein the unen-
crypted data will not be accessible to a third party. The data
re-encrypted under the external key then can be transmitted
358 to the appropriate location or address, which may or
may not be associated with the source of the request in
various embodiments. In some embodiments the source of
the read request can also be different than the source of the
write request(s) that caused the data to be stored in the data
storage device. In some embodiment there is no authenti-
cation and a requestor can receive a copy of the re-encrypted
data, which the recipient will be unable to decrypt without
a copy of the appropriate key.

In some embodiments, the key that is used to re-encrypt
the data might be different from the key that was used to
write the data. For example, in the situation 400 illustrated
in FIG. 4(a) a third key 402 can be issued from a key source
208, such as the key management service mentioned previ-
ously, to the data storage service 204 storing the encrypted
data. It should be understood that reference numbers for
similar elements may be carried over between figures for
purposes of simplicity of understanding but that such usage
should not be interpreted as a limitation on the scope of the
various embodiments unless otherwise specifically stated.
The key source 208 might issue a new key, here the third key
402, for any of a number of reasons, such as at the request
of a customer associated with a first key that was used to
previously encrypt customer data or as part of a key rotation
process, among other such options. The generation and/or
providing of a third key for such purposes may require an
authentication in some embodiments, or at least proof of
possession of the first key. A customer, or other storage
command initiator 202, can also receive a copy of the third
key 402 in order to access and interact with data that was
previously encrypted by that customer using the first key and
is now stored by the data storage service encrypted under the
second key. If the customer wants to perform an action with
respect to the new data, the customer can then utilize the
third key if appropriate, such as to generate a digital signa-
ture to accompany the corresponding input/output command
404. In some cases the customer will not utilize the third key
with the command 404, but will instead store the key for
usage with any data received in response to the command
that is encrypted under the third key.

As illustrated in the example situation 420 of FIG. 4(5),
the data storage controller can store a copy of the third key,
k3, such that any subsequent response or action requiring
re-encryption can be performed using the third key. In this
way, it will appear to the customer that the data was
encrypted using the first key and re-encrypted under the
third key without any actual re-encryption with the third key
occurring until such time as it is needed. If no request is
received while the third key is active, the stored data may not
be re-encrypted using the third key. The data that is stored
will be encrypted under the second key that is internal to the
data storage device, and will not be re-encrypted under an
externally available key until such time as the data is to be
transmitted from the data storage service. When the com-
mand 404 is received by the data storage service, the data
storage controller 420 can use its copy of the third key,

US 9,455,963 Bl

13

determined to correspond to the customer or other command
storage initiator 202, to re-encrypt the data with the third key
after it is decrypted, inside the relevant data storage device,
with the second key. The relevant re-encrypted data 424 can
then be sent to the storage command initiator 202, or another
appropriate destination or address, using an appropriate
response 422. The response can then be decrypted using the
current key, which in this example is the third key.

FIG. 5 illustrates an example process 500 for performing
such a key change, where an entity external to the data
storage device will be able to switch keys for encryption and
decryption of the data without knowing about, or at least
having access to, an internal key used by at least one data
storage device to store the data. In this example, a read
request is received 502 to a data storage device, for example,
for data that was previously encrypted under a first key when
received by the data storage device. As discussed above, the
data was decrypted using the first key then re-encrypted
using a second, internal key for storage inside the data
storage device. The source of the request can be authenti-
cated using any of various approaches discussed or sug-
gested herein, in some embodiments, and if it is determined
that the source cannot be authenticated (or is not authorized,
etc.) then the request can be denied. If the source of the
request can be authenticated and/or is authorized to access or
retrieve at least a portion of the stored data, the relevant data
can be decrypted 504 inside the data storage device using the
second key which is not accessible outside the data storage
device. The data then can be re-encrypted 506 using the third
key, which is the current key now associated with the source
of the read request. The encrypted data then can be trans-
mitted 508 per the read request, such that the encrypted data
can be decrypted by the recipient having a copy of the third
key.

In some embodiments, the rotation of the externally
available key associated with a customer or other such entity
can be handled in a different way. For example, in the
situation 600 of FIG. 6(a) a set of keys 602 is sent to the data
storage service 204. At least the first key 206, or other
current key, can be sent to the customer, or at least a storage
command initiator 202 capable of generating commands on
behalf of the customer. In other embodiments the storage
command initiator or customer can receive the set of keys
602 as well. The keys can have associated timestamps or
otherwise be ordered or numbered such that the keys can be
rotated in the desired order at the appropriate times, although
other approaches for rotating the keys can be used as well as
known or used for the rotation of keys or other such
credentials. For example, the data storage controller 204 can
store a copy of all the keys, or at least the keys that are
current keys or keys that will become the current key
through a rotation process. The data storage controller 218
for a device can store both the current key and the internal
key in a readily accessible location, and can store the
remaining externally accessible keys for use at a later time.
When a storage command initiator 202 submits an input/
output or data storage command 210, for example, that
command can include a signature 212 or other credential,
which can be encrypted using the current first key, and data
216 that is encrypted using the first key, as discussed
previously. A data storage device receiving the command, or
at least a portion of the command, can decrypt the data using
the current first key then re-encrypt the data using a second,
internal key for storage in a data store or non-transitory
storage medium 214 internal to the device.

At a subsequent time, the current key for encrypting data
for the customer to be transmitted from the device can be

10

15

20

25

30

35

40

45

50

55

60

65

14

changed from the first key to a third key, where that third key
was previously provided to the data storage service as part
of the set of keys, as illustrated in the example situation 620
of FIG. 6(b). For example, the data storage controller can
compare the time that the request is received with a time-
stamp or table indicating the current external key out of the
set of keys. In this example, the data storage controller 218
can determine that the first key is no longer current and that
the third key is to be used for encrypting data associated with
the specified customer. Accordingly, the data storage con-
troller 218 can cause the corresponding data to be read from
the data store 214 on the device and decrypted using the
internal second key, which is not accessible outside the
storage device. Since the first key is no longer current, the
key can be deleted or otherwise marked as no longer current,
etc. The determination that the third key is the current key
for the customer can cause the relevant data to be encrypted
using the third key, and the encrypted data 624 can be sent
with the appropriate response 622 to the command storage
initiator 202 or another appropriate destination or address.
At a later time, a fourth key stored by the data storage
controller can be determined to be the current key, and so on.
It should be understood that other mechanisms can be used
to cause the external keys to rotate as well, such as a request
from the customer or key management service, a tamper or
power event, etc.

FIG. 7 illustrates an example of such a process 700 for
enabling external key rotation, without a compulsory re-
encryption of all the data, that can be utilized in accordance
with various embodiments. In this example, a write request
(or other 1/0 command including at least a write portion) is
received 702 where attached data is encrypted under a first
key associated with a customer. The data is decrypted 704
using the first key, and re-encrypted (inside at least one
storage device) using a second key that is not accessible
outside the relevant storage device. The data encrypted
under the second key is then stored in the relevant storage
device. As mentioned, the storage device may have received
two or more keys associated with the customer, where one
of the keys is the currently active key and at least one key
is a key to be used in the future. As mentioned, in some
embodiments a manual key rotation can be triggered by the
customer, a key management service, or another such entity.
For example, a manual key change operation may be per-
formed that requires proof that the requestor is aware of the
old outside key, which could involve presenting a copy of
the outside key or issuing a specific command authenticated
with, or encrypted using, the old outside key. In this
example, each key has an associated timestamp or other
temporal data associated such that the third key can be
caused 706 to be the current key, replacing the first key for
the customer, at a specified time. The second key that is
internal to the storage device can remain the same, but the
external key used to transmit data on behalf of the customer
can be updated to the third key.

Subsequent to the current key being changed to the third
key, a read request can be received 708 for the data that was
previously encrypted under the first key associated with the
customer. In some embodiments the source of the read
request can be authenticated as discussed elsewhere herein,
and if it is determined that the source cannot be authenti-
cated (or authorized, validated, etc.) then the request can be
denied. Otherwise, the relevant data stored in the storage
device can be decrypted 710 using the second key that is
accessible only inside the data storage device. The data can
then be re-encrypted 712 inside the storage device (or
elsewhere) using the third key now associated with the

US 9,455,963 Bl

15

customer and/or the source of the read request. The
encrypted data can then be transmitted 714 in response to the
request, with the data only having been re-encrypted under
the third key in response to the request for the data. If the
data had not been requested until the key was changed to a
fourth key, that data may never have been encrypted under
the third key.

There may be other situations where a key rotation may
be desired as well. This can include not only an externally
accessible key but a key that is only accessible inside a
storage device as well. For example, it may be desirable to
change keys in response to a power loss or tamper event in
order to increase the security of the data. A “tamper event”
as referred to herein relates to any detectable action that is
indicative of a potential attempt to tamper with the storage
device, in order to obtain access to the data stored on the
device or otherwise modify the operation or storage per-
formed by the device. It thus might be desirable to change
the key in response to the storage device being pulled out of
a rack, disconnected from a power or communication cable,
etc. A storage device can be programmed to rotate the key
upon a boot or startup action, which can be indicative of a
power loss or other such action. One approach to providing
for tamper-based rotation is to include one or more sensors
or other such components on a device cable, which can
convey to the device when various actions occur and/or are
detected. For example, in the example cross-section 800 of
FIG. 8(a) a SATA connector is shown (although other
connectors can be used as well) that has a number of
connection pins or pads 804 in the connector housing 802,
where the housing is typically formed of a non-conductive
plastic. A pair of conductive pads 806 can be placed on an
exterior surface of the connector housing 802, which can
contact a conductor on the cable housing such that an
electrical connection is formed when the cable is attached to
the connector. When a cable is pulled from the SATA
connector, the electrical connection between the conductive
pads 806 and the cable conductor will be broken, which can
trigger a key rotation. An establishment of such a connection
can also cause a key rotation in some embodiments. At least
one of the pads 806 can include, or be in contact with, a
connection sensor operable to communicate to a data storage
controller or other such component that there has been a
cable connection or disconnection action. The example
cross-section 820 of FIG. 8(b) illustrates another example
configuration wherein a physical switch 822 is incorporated
into the connector housing 802. The switch 822 can include,
or be in contact with, a sensor that can indicate to a storage
device controller when a cable is connected to the connector
as well as when the connector is not connected to a cable. It
should be understood that for the switch and other sensors
herein that the switch or sensors can be placed on an inside,
outside, or top of the connector (or cable) based at least in
part upon whether the connector is a male or female con-
nector, or another physical aspect of the connector or cable.
In this example, a cable being connected can cause the
switch 822 to be depressed, or in a closed state, which can
indicate to the appropriate sensor that the cable is connected.
If no cable is connected, the switch can be in an open or
extended state, for example, whereby the sensor can detect
that a cable is not connected. In order to provide enhanced
security, a switch or sensor can be placed at or near both
ends of the cable to ensure that the device is not removed by
detaching the other end of the cable, etc. Switches can also
be used to determine that the device is in a rack or housing,
etc., by positioning one or more switches on appropriate
locations of the connector, housing, or storage device.

10

15

20

25

30

35

40

45

50

55

60

65

16

Various pressure sensors can be used to detect connections
as well, with or independent of such switches, in accordance
with various embodiments.

Instead of a physical switch, a sensor such as a light
sensor 842 can be used as illustrated in the example situation
840 of FIG. 8(¢). In such an example, the connection of a
cable or external housing can cause the light detector to
detect little to no incident light, and detection of less than a
threshold amount of light can be indicative of the device
being connected to the appropriate cable, rack, etc. On the
other hand, detection of light above such a threshold can be
indicative of the device being disconnected or removed. Any
such action that is indicative of a potential tampering action
can cause a key change or other such action. Sensors can be
placed in other appropriate places as well, such as in screw
holes, brackets, mounting hardware, and the like. Other
sensors, such as location sensors or geo-coordinate deter-
mining components can be used to determine the location of
a device, such that movement or presence of the device
outside a particular region, or more than a determined
distance from a specified location, can also trigger a key
rotation in some embodiments. Motion sensors (e.g., inertial
sensors, gyroscopes, accelerometers, digital compasses, and
the like) can also be used to trigger a key rotation when the
amount of movement and/or change in orientation meets or
exceeds a specified threshold. In some embodiments, a
tamper event might cause the key to be rotated to a dedicated
key outside of the normal rotation, among other such
options. Further, for key rotations managed inside of the disk
firmware without general purpose interfaces, it can be dif-
ficult for a malicious party to attach a debugger, disassem-
bler, or other device or process to the physical storage device
to attempt to recover the internal, unexportable key.

In some embodiments, there might also be different keys
used for different types of operations or different users,
among other such options. For example, FIG. 9 illustrates an
example process 900 wherein data is encrypted under dif-
ferent keys depending at least in part upon the identity of the
requesting entity that can be utilized in accordance with
various embodiments. In this example, a read request is
received 902 to the data storage device. As discussed else-
where herein, the data stored by the data storage device is
encrypted under a second key that is inaccessible outside the
storage device. The source of the request can be authenti-
cated 904, such as by verifying one or more credentials
associated with the request as discussed elsewhere herein.
Authorization and other verification steps can also be per-
formed as discussed herein in various embodiments. If it is
determined 906 that the request cannot be authenticated (or
authorized, validated, etc.), the request can be denied 908. If
it is determined that the source of the request can be
authenticated to an identity authorized to retrieve or operate
on the data, a determination can be made 910 as to which
identity is associated with the request and what permissions
that identity has with respect to the data. For example, if the
identity is determined 910 to correspond to a first identity,
the relevant data stored by the data storage device can be
decrypted, inside the data storage device, using the second
key inaccessible outside the data storage device. A determi-
nation can also be made that the first key is associated with
the first identity, such that the data is then re-encrypted using
the first key. In this example the data is re-encrypted inside
the data storage device, but in other embodiments the data
can be re-encrypted in a data storage environment including
the data storage device, or other such location wherein the
unencrypted data will not be accessible to a third party. The
data re-encrypted under the first key then can be transmitted

US 9,455,963 Bl

17

912 to the appropriate location or address associated with
the first identity, which may or may not be associated with
the source of the request in various embodiments. In some
embodiments the source of the read request can also be
different than the source of the write request(s) that caused
the data to be stored in the data storage device.

If, however, the identity is determined 910 to be a second
identity associated with a third key, the data after decryption
using the second key can be re-encrypted with the third key
and then transmitted 914 to an address or destination asso-
ciated with the second identity. It is also possible that the
identity is determined to be a third identity that is not
associated with a key or otherwise does not have permission
(or is otherwise not authorized) to access the data. Similarly,
it is possible that the identity cannot be determined. In such
instances, the read request can be denied or at least none of
the stored data will be decrypted, re-encrypted, and trans-
mitted outside the device. As mentioned, different keys can
be used for different actions, identities, destinations, etc.

In at least some embodiments, one or more stream cipher
algorithms can be used to generate new keys on demand, as
well as intermediate keys used in the key upgrade process.
A customer, manager, or other such entity can request that a
key be upgraded, and a security manager, key manager, or
other such component can cause the new and intermediate
keys to be generated and sent to the appropriate locations
where data stored under the old key is located. In other
embodiments, keys can be scheduled to be rotated at regular
intervals, or at other appropriate times, and the new and
intermediate keys can be generated and pushed out auto-
matically. In some embodiments, a security manager might
receive a new key to be used, and generate an intermediate
key to be distributed to the appropriate locations. The
intermediate key then can be provided to any location
having data stored under the old key, in order to cause the
data to be encrypted under the new key.

In some embodiments upgrade keys can be used that
match proper prefixes of the initial key, either randomly or
in some sequence. Such an approach enables keys to be
optimized out for improved security and/or processing. For
example, if two 128 bit sub-keys in a 1,280 bit key are the
same, those keys can be canceled out to arrive at a 1,024 bit
key that does not include the redundant keys. An XOR
cipher will cancel out any equal sub-keys or other such
values. In some embodiments, keys can be used that are
always twice the length of the previous, underlying genera-
tor key. In still other embodiments, the upgrade key can
always be twice the size of the generator key, but half the
size of the resulting new key. For example, the old key might
be 128 bits in length, with the intermediate key being 256
bits that, when processed as discussed herein, results in a
new key of 128 bits in length. The upgrade key can be the
pairing of the old key and the new key, which does not
provide robust security but does suffice to upgrade to the
new key with efficient processing.

The ability to bootstrap an authentication key to a storage
device also provides additional functionality not offered by
conventional storage devices. For example, a special com-
mand or read to a particular location can be used to trigger
a key exchange, where a key or key form can be used to
create a data context on the device. Operations authenticated
with the appropriate key could have a first level of access to
that data context, and operations not authenticated with that
key, or authenticated with a different key, can obtain a
second level of access to that data context. Rather than
requiring access to a key management system, each source
of a storage operation can negotiate a key with the storage

10

15

20

25

30

35

40

45

50

55

60

65

18

device, whereby the device itself can authenticate opera-
tions. The storage device then can be responsible for hon-
oring only those operations authenticated with the negoti-
ated key. Any number of keys can be utilized, but specific
writes or commands must the tied to the appropriate key to
be processed. In some embodiments, a key can be used to
select a block map, whereby different users can negotiate
different keys, read or write data at offset zero, and receive
different virtualized views of the zero sector.

Various approaches can be used to obtain the key for such
purposes. For example, a customer or guest can negotiate a
key for virtual reads and writes. In some embodiments a
derived MAC key can be provide that may be encrypted to
a different key that is known to be available to the storage
device. Public key certificates can also be used in various
embodiments. Various mechanisms can be used to provide
authorizations as well. In some embodiments, a list or other
collection of authorizations can be maintained that indicates
which commands can be processed, or how those commands
are to be processed, for different users or types of users.
While some authorizations can be tied to specific keys, in
other embodiments a fully flexible policy language might be
used that could send requests to a key management service
and can maintain a facility for receiving additional keys
encrypted with a key that is burned into the storage device
and not exportable.

FIG. 10 illustrates a set of basic components of an
example computing device 1000 that can be utilized to
implement aspects of the various embodiments. In this
example, the device includes at least one processor 1002 for
executing instructions that can be stored in a memory device
or element 1004. As would be apparent to one of ordinary
skill in the art, the device can include many types of
memory, data storage or computer-readable media, such as
a first data storage for program instructions for execution by
the at least one processor 1002, the same or separate storage
can be used for images or data, a removable memory can be
available for sharing information with other devices, and
any number of communication approaches can be available
for sharing with other devices. The device may include at
least one type of display element 1006, such as a touch
screen, electronic ink (e-ink), organic light emitting diode
(OLED) or liquid crystal display (LCD), although devices
such as servers might convey information via other means,
such as through a system of lights and data transmissions.
The device typically will include one or more networking
components 1008, such as a port, network interface card, or
wireless transceiver that enables communication over at
least one network. The device can include at least one input
device 1010 able to receive conventional input from a user.
This conventional input can include, for example, a push
button, touch pad, touch screen, wheel, joystick, keyboard,
mouse, trackball, keypad or any other such device or ele-
ment whereby a user can input a command to the device.
These I/O devices could even be connected by a wireless
infrared or Bluetooth or other link as well in some embodi-
ments. In some embodiments, however, such a device might
not include any buttons at all and might be controlled only
through a combination of visual and audio commands such
that a user can control the device without having to be in
contact with the device.

FIG. 11 illustrates a set of basic components of an
example storage device 1100 that can be utilized to imple-
ment aspects of the various embodiments. In this example,
the device includes at least one processor 1002 for executing
instructions that can be stored in a memory device or
element 1004. As would be apparent to one of ordinary skill

US 9,455,963 Bl

19

in the art, the device can include many types of memory,
data storage or computer-readable media, such as a first data
storage for program instructions for execution by the at least
one processor 1002, the same or separate storage can be used
for images or data, a removable memory can be available for
sharing information with other devices, and any number of
communication approaches can be available for sharing with
other devices. For a storage device the device can include
one or more non-transitory computer-readable storage media
1110, which can be used to store data for one or more users,
entities, or other such data sources. The device typically will
include one or more communication elements or compo-
nents 1108, such as network interface card or wireless
transceiver that enables communication over at least one
network. The device can also include at least one data port
1106, such as a SATA port, for transferring data to, and from,
the device. The device can include at least one other input
device able to receive conventional input from a user. This
conventional input can include, for example, a push button,
touch pad, touch screen, keypad or any other such device or
element whereby a user can input a command to the device.

As discussed, different approaches can be implemented in
various environments in accordance with the described
embodiments. As will be appreciated, although a Web-based
environment is used for purposes of explanation in several
examples presented herein, different environments may be
used, as appropriate, to implement various embodiments.
The system includes an electronic client device, which can
include any appropriate device operable to send and receive
requests, messages or information over an appropriate net-
work and convey information back to a user of the device.
Examples of such client devices include personal computers,
cell phones, handheld messaging devices, laptop computers,
set-top boxes, personal data assistants, electronic book read-
ers and the like. The network can include any appropriate
network, including an intranet, the Internet, a cellular net-
work, a local area network or any other such network or
combination thereof. Components used for such a system
can depend at least in part upon the type of network and/or
environment selected. Protocols and components for com-
municating via such a network are well known and will not
be discussed herein in detail. Communication over the
network can be enabled via wired or wireless connections
and combinations thereof. In this example, the network
includes the Internet, as the environment includes a Web
server for receiving requests and serving content in response
thereto, although for other networks, an alternative device
serving a similar purpose could be used, as would be
apparent to one of ordinary skill in the art.

The illustrative environment includes at least one appli-
cation server and a data store. It should be understood that
there can be several application servers, layers or other
elements, processes or components, which may be chained
or otherwise configured, which can interact to perform tasks
such as obtaining data from an appropriate data store. As
used herein, the term “data store” refers to any device or
combination of devices capable of storing, accessing and
retrieving data, which may include any combination and
number of data servers, databases, data storage devices and
data storage media, in any standard, distributed or clustered
environment. The application server can include any appro-
priate hardware and software for integrating with the data
store as needed to execute aspects of one or more applica-
tions for the client device and handling a majority of the data
access and business logic for an application. The application
server provides access control services in cooperation with
the data store and is able to generate content such as text,

25

40

45

50

55

20

graphics, audio and/or video to be transferred to the user,
which may be served to the user by the Web server in the
form of HTML, XML or another appropriate structured
language in this example. The handling of all requests and
responses, as well as the delivery of content between the
client device and the application server, can be handled by
the Web server. It should be understood that the Web and
application servers are not required and are merely example
components, as structured code discussed herein can be
executed on any appropriate device or host machine as
discussed elsewhere herein.

The data store can include several separate data tables,
databases or other data storage mechanisms and media for
storing data relating to a particular aspect. For example, the
data store illustrated includes mechanisms for storing con-
tent (e.g., production data) and user information, which can
be used to serve content for the production side. The data
store is also shown to include a mechanism for storing log
or session data. It should be understood that there can be
many other aspects that may need to be stored in the data
store, such as page image information and access rights
information, which can be stored in any of the above listed
mechanisms as appropriate or in additional mechanisms in
the data store. The data store is operable, through logic
associated therewith, to receive instructions from the appli-
cation server and obtain, update or otherwise process data in
response thereto. In one example, a user might submit a
search request for a certain type of item. In this case, the data
store might access the user information to verify the identity
of the user and can access the catalog detail information to
obtain information about items of that type. The information
can then be returned to the user, such as in a results listing
on a Web page that the user is able to view via a browser on
the user device. Information for a particular item of interest
can be viewed in a dedicated page or window of the browser.

Each server typically will include an operating system
that provides executable program instructions for the general
administration and operation of that server and typically will
include computer-readable medium storing instructions that,
when executed by a processor of the server, allow the server
to perform its intended functions. Suitable implementations
for the operating system and general functionality of the
servers are known or commercially available and are readily
implemented by persons having ordinary skill in the art,
particularly in light of the disclosure herein.

The environment in one embodiment is a distributed
computing environment utilizing several computer systems
and components that are interconnected via communication
links, using one or more computer networks or direct
connections. However, it will be appreciated by those of
ordinary skill in the art that such a system could operate
equally well in a system having fewer or a greater number
of components than are illustrated. Thus, the depiction of the
systems herein should be taken as being illustrative in nature
and not limiting to the scope of the disclosure.

The various embodiments can be further implemented in
a wide variety of operating environments, which in some
cases can include one or more user computers or computing
devices which can be used to operate any of a number of
applications. User or client devices can include any of a
number of general purpose personal computers, such as
desktop or laptop computers running a standard operating
system, as well as cellular, wireless and handheld devices
running mobile software and capable of supporting a num-
ber of networking and messaging protocols. Such a system
can also include a number of workstations running any of a
variety of commercially-available operating systems and

US 9,455,963 Bl

21

other known applications for purposes such as development
and database management. These devices can also include
other electronic devices, such as dummy terminals, thin-
clients, gaming systems and other devices capable of com-
municating via a network.

Most embodiments utilize at least one network that would
be familiar to those skilled in the art for supporting com-
munications using any of a variety of commercially-avail-
able protocols, such as TCP/IP, FTP, UPnP, NFS, and CIFS.
The network can be, for example, a local area network, a
wide-area network, a virtual private network, the Internet, an
intranet, an extranet, a public switched telephone network,
an infrared network, a wireless network and any combina-
tion thereof.

In embodiments utilizing a Web server, the Web server
can run any of a variety of server or mid-tier applications,
including HTTP servers, FTP servers, CGI servers, data
servers, Java servers and business application servers. The
server(s) may also be capable of executing programs or
scripts in response requests from user devices, such as by
executing one or more Web applications that may be imple-
mented as one or more scripts or programs written in any
programming language, such as Java®, C, C# or C++ or any
scripting language, such as Perl, Python or TCL, as well as
combinations thereof. The server(s) may also include data-
base servers, including without limitation those commer-
cially available from Oracle®, Microsoft®, Sybase® and
IBM® as well as open-source servers such as MySQL,
Postgres, SQLite, MongoDB, and any other server capable
of storing, retrieving and accessing structured or unstruc-
tured data. Database servers may include table-based serv-
ers, document-based servers, unstructured servers, relational
servers, non-relational servers or combinations of these
and/or other database servers.

The environment can include a variety of data stores and
other memory and storage media as discussed above. These
can reside in a variety of locations, such as on a storage
medium local to (and/or resident in) one or more of the
computers or remote from any or all of the computers across
the network. In a particular set of embodiments, the infor-
mation may reside in a storage-area network (SAN) familiar
to those skilled in the art. Similarly, any necessary files for
performing the functions attributed to the computers, servers
or other network devices may be stored locally and/or
remotely, as appropriate. Where a system includes comput-
erized devices, each such device can include hardware
elements that may be electrically coupled via a bus, the
elements including, for example, at least one central pro-
cessing unit (CPU), at least one input device (e.g., a mouse,
keyboard, controller, touch-sensitive display element or key-
pad) and at least one output device (e.g., a display device,
printer or speaker). Such a system may also include one or
more storage devices, such as disk drives, optical storage
devices and solid-state storage devices such as random
access memory (RAM) or read-only memory (ROM), as
well as removable media devices, memory cards, flash cards,
etc.

Such devices can also include a computer-readable stor-
age media reader, a communications device (e.g., a modem,
a network card (wireless or wired), an infrared communi-
cation device) and working memory as described above. The
computer-readable storage media reader can be connected
with, or configured to receive, a computer-readable storage
medium representing remote, local, fixed and/or removable
storage devices as well as storage media for temporarily
and/or more permanently containing, storing, transmitting
and retrieving computer-readable information. The system

10

20

25

30

40

45

50

55

60

o

5

22

and various devices also typically will include a number of
software applications, modules, services or other elements
located within at least one working memory device, includ-
ing an operating system and application programs such as a
client application or Web browser. It should be appreciated
that alternate embodiments may have numerous variations
from that described above. For example, customized hard-
ware might also be used and/or particular elements might be
implemented in hardware, software (including portable soft-
ware, such as applets) or both. Further, connection to other
computing devices such as network input/output devices
may be employed.

Storage media and other non-transitory computer read-
able media for containing code, or portions of code, can
include any appropriate media known or used in the art, such
as but not limited to volatile and non-volatile, removable and
non-removable media implemented in any method or tech-
nology for storage of information such as computer readable
instructions, data structures, program modules or other data,
including RAM, ROM, EEPROM, flash memory or other
memory technology, CD-ROM, digital versatile disk (DVD)
or other optical storage, magnetic cassettes, magnetic tape,
magnetic disk storage or other magnetic storage devices or
any other medium which can be used to store the desired
information and which can be accessed by a system device.
Based on the disclosure and teachings provided herein, a
person of ordinary skill in the art will appreciate other ways
and/or methods to implement the various embodiments.

The specification and drawings are, accordingly, to be
regarded in an illustrative rather than a restrictive sense. It
will, however, be evident that various modifications and
changes may be made thereunto without departing from the
broader spirit and scope of the invention as set forth in the
claims.

What is claimed is:

1. A computer-implemented method, comprising:

receiving data in a write request, the data encrypted under

a first external key;
decrypting the data to a storage device using a copy of the
first external key stored by the storage device;
re-encrypting, in the storage device, the data using an
internal key generated within, and inaccessible outside,
the storage device;

storing the data, encrypted under the internal key, in the

storage device;

receiving a read request to access the data encrypted

under the internal key;

decrypting, in the storage device, the data using the

internal key;

determining a current external key resulting from a rota-

tion event;

replacing the copy of the first external key, stored in the

storage device, with the current external key;
re-encrypting the data stored in the storage device using
the current external key; and

transmitting the data, re-encrypted under the current

external key, from the storage device to a destination
specified by the read request.

2. The computer-implemented method of claim 1, further
comprising:

authenticating an identity of a first user, associated with

the data, in order to determine the current external key
from a plurality of user keys.

3. The computer-implemented method of claim 2, further
comprising:

determining at least one of an access permission or an

authorization for the identity of the first user before

US 9,455,963 Bl

23

re-encrypting the data and transmitting the data re-
encrypted under the current external key.

4. The computer-implemented method of claim 1, further
comprising:

determining the current external key at least in part by

comparing a respective timestamp for one or more
external keys to a current time.

5. The computer-implemented method of claim 1, further
comprising:

determining the current external key at least in part by

determining at least one task associated with the read
request, the current external key selected from a set of
external keys associated each associated with at least
one respective task.

6. A storage device, comprising:

at least one non-transitory computer-readable storage

medium for storing data;

at least one processor; and

memory including instructions that, when executed by the

at least one processor, cause the storage device to:

receive, to the storage device, data encrypted under a
first external key;

decrypt the data in the storage device using a copy of
the first external key;

encrypt, in the storage device, the data under an internal
key, the internal key generated inside the storage
device and inaccessible outside the storage device;

determine a current external key resulting from a
rotation event;

replace the copy of the first external key with the
current external key;

store the data, encrypted under the internal key, in the
storage device, the data capable of being decrypted
in the storage device internally under the internal
key; and

encrypt the at least a portion of the data under the
current external key, in response to a subsequent read
request for the at least a portion of the data.

7. The storage device of claim 6, wherein the instructions
when executed further cause the storage device to:

decrypt, in response to a subsequent write request for the

at least a portion of the data, the at least a portion of the
data, using the copy of the current external key, before
encrypting the data under the internal key for storage in
the storage device.

8. The storage device of claim 6, wherein the instructions
when executed further cause the storage device to:

store a copy of the current external key in the storage

device; and

transmit, in response to the subsequent read request, the at

least a portion of the data encrypted under the current
external key, to a destination specified in the subse-
quent read request.

9. The storage device of claim 6, wherein determining the
current external key includes executing the rotation event
affecting one of the first external key or a different external
key.

10. The storage device of claim 6, wherein the instructions
when executed further cause the storage device to:

receive a set of external keys associated with a source of

the data, each external key of the set of external keys
capable of being designated a current external key for
encryption of data for the source at a future time.

11. The storage device of claim 6, wherein the instructions
when executed further cause the storage device to:

10

15

20

25

30

35

40

45

50

55

60

65

24

change the internal key to a new internal key, the new
internal key generated inside the storage device and
inaccessible outside the storage device.

12. The storage device of claim 8, wherein the instructions
when executed further cause the storage device to:

detect, by at least one sensor in the storage device, a

trigger event; and

execute, in response to detecting the trigger event, the

rotation event affecting at least one of the internal key
or the first external key.

13. The storage device of claim 12, wherein the at least
one sensor includes at least one of a power sensor, a
mechanical switch, an electrical connection sensor, a light
sensor, a motion sensor, a location sensor, or a pressure
Sensor.

14. The storage device of claim 6, wherein the instructions
when executed further cause the storage device to:

verify a digital signature of the subsequent request before

decrypting the data, the digital signature generated at
least in part using the current external key, the current
external key associated with a source of the data.

15. A non-transitory computer-readable storage medium
storing instructions that, when executed by at least one
processor of a storage device, cause the storage device to:

receive data encrypted under a first external key;

decrypt the data in the storage device using a copy of the
first external key;

encrypt the data under an internal key, the internal key

generated inside the storage device and inaccessible
outside the storage device;

determine a current external key resulting from a rotation

event;

replace the copy of the first external key with the current

external key;
store the data, encrypted under the internal key, in the
storage device, the data capable of being decrypted in
the storage device internally, using the internal key; and

encrypt at least a portion of the data under the current
external key, in response to a subsequent read request
for the at least a portion of the data.

16. The non-transitory computer-readable storage
medium of claim 15, wherein the instructions when
executed further cause the storage device to:

decrypt, in response to a subsequent write request for the

at least a portion of the data, the at least a portion of the
data, using a copy of the current external key, before
encrypting the data under the internal key for storage in
the storage device.

17. The non-transitory computer-readable storage
medium of claim 15, wherein the instructions when
executed further cause the storage device to:

receive the subsequent read request for at least the portion

of the data;

store a copy of the current external key in the storage

device; and

transmit, in response to the subsequent read request, the at

least a portion of the data, encrypted using the current
external key, to a destination specified in the subse-
quent read request.

18. The non-transitory computer-readable storage
medium of claim 15, wherein the internal key is generated
and stored using a tamper-resistant cryptographic co-pro-
cessor in the storage device.

19. The non-transitory computer-readable storage
medium of claim 15, wherein the instructions when
executed further cause the storage device to:

US 9,455,963 Bl

25

determine at least one of a task or an identity associated
with the subsequent request;
determine a corresponding external key associated with
the at least one of a task or an identity associated with
the subsequent request; and
re-encrypt the data using the corresponding external key
before causing the data to be transmitted outside the
storage device.
20. A system, comprising:
at least one processor; and
memory storing instructions that, when executed by the at
least one processor, cause the system to:
receive data in a write request, the data encrypted under
a first external key;
decrypt the data in the system using a copy of first
external key stored in the at least one non-transitory
computer-readable storage medium;
re-encrypt, in the system, the data using an internal key
generated within, and inaccessible outside, the sys-
tem;

10

15

cause the data to be stored, encrypted under the internal 20

key, in the at least one non-transitory computer-
readable storage medium;

26

receive a read request to access the data encrypted
under the internal key;
decrypt, in the system, the data using the internal key;
determine a current external key resulting from a
rotation event;
replace the first external key with the current external
key;
re-encrypt the data stored in the at least one non-
transitory computer-readable storage medium using
the current external key;
store a copy of the current external key in the at least
one non-transitory computer-readable storage
medium; and
transmit the data from the system, re-encrypted under
the current external key, to a destination specified by
the read request.
21. The system of claim 20, wherein the instructions when
executed further cause the system to:
store the data encrypted under the internal key.

#* #* #* #* #*

